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The results of an investigation of the nonstationary mixing of the heat-transfer 
agent accompanying the reduction of the heat load in a bundle of twisted tubes 
are presented, and a generalizing dependence for calculating the effective coef- 
ficient of diffusion is derived. 

The problems of nonstationary heat and mass transfer in channels are now of great in- 
terest, since transient processes associated with a change in the operating conditions, ac- 
tuation or stopping of heat-exchangers, can in many cases have a deciding effect on their 
safe operation. The results of investigations of nonstationary heat transfer in circular 
pipes are presented in [i]. Stationary heat- and mass-transfer processes [2] as well as non- 
stationary mixing of the heat-transfer agent with increasing heat load [3-6] have been inves- 
tigated quite fully for channels with a complicated shape, formed by bundles of twisted tubes. 
In so doing it was found that nonstationary transport processes in bundles of twisted tubes 
have a number of peculiarities, linked with the solutions of constructional problems associ- 
ated with them. Investigations of the mixing of the heat-transfer agent with increasing 
thermal power and constant flow rate of the agent showed that the temperature fields in the 
agent are restructured within the first 10-20 sec, leading to intensification of transfer 
processes as compared with quasistationary transfer [3-6]. When the thermal load is reduced 
rapidly to zero with the maximum value of the derivative of the power with respect to time 
(~N/ST) m = 7.5-10 kW/sec, it was observed in [3-6] that the intensity of the mixing process 
drops during the first moments compared with the quasistationary operating conditions. A 
criterional dependence was derived for nonstationariness of this type for calculating the 
dimensionless effective diffusion coefficient K n = Dtn/ud e in a bundle of twisted pipes with 
the number Fr m = S2/dde = 220, where S is the pitch of the twisting of the oval profile of 
the tubes: 

Ka/Kqs = 0.454. 10-SFo~ 2 --3.86.10-~Fo~ !@ 1,24. (1)  

In t h e  e x p r e s s i o n  (1)  t he  q u a s i s t a t i o n a r y  va lue  o f  the  e f f e c t i v e  d i f f u s i o n  c o e f f i c i e n t  K 
i s  de t e rmined  by t he  dependences  in  [7 ] ,  whi le  t he  F o u r i e r  c r i t e r i o n  Fo b i s  g iven  by theqS ex-  
p r e s s i o n  

a~ %bT 
Fob = - -  c, be  ( 2 )  

In t h i s  paper  t he  da t a  of  [3,  6] and new r e s u l t s  of  an i n v e s t i g a t i o n  of  n o n s t a t i o n a r y  
mixing in a bundle of twisted tubes with Fr m = 57, obtained with a reduction of the thermal 
load and a transition into the reduced power regime are generalized in order to determine 
the criterional dependence for calculating the dimensionless effective diffusion coefficient 
K n with this type of nonstationariness. 

The experimental investigations of nonstationary heat and mass transfer were performed 
on the experimental setup described in [3, 6] by the method of diffusion from a system of 
linear heat sources. The central zone, consfsting of 37 tubes, in a bundle of 127 twisted 
tubes was heated with an electric current. The temperature distribution in the heat-trans- 
fer agent was measured in the output section of the bundle, which was 0.5 m long, with the 
help of a rack of I0 Chromel-Alumel thermocouples with wire 0.i mm in diameter, placed at 
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Fig. i. Thermal load and temperature of the heat-transfer 
agent as a function of time with a transition to a different, 
lower power operating regime: 1-3) change in the power for 
the numbers Re = 1.25-i0~; 8.9"103 , 5.1-i0 ~, respectively; 4- 
13) change in the temperature of the heat-transfer agent for 
Re = 1.25.104 with r/r k = 0.073; 0.128; 0.193; 0.265; 0.334; 
0.408; 0.479; 0.624; 0.770; 0.916, respectively. T, K; N, kW; 
T, sec. 

Fig. 2. Temperature distribution in the heat-transfer agent 
in the output section of the bundle for Re = 1.25"104: 1-15) 
computed temperature distribution: I, 4, 7, i0, 13) with K n = 
0.03; 2, 5, 8, ii, 14) with K n = 0.06; 3, 6, 9, 12, 15) with 
K n = 0.075; 16-20) experimental data for T = 4, 8, 12, 16, and 
32 sec, respectively. 

characteristic points of the flow with the coordinates r/r k = 0.073; 0.128; 0.193; 0.265; 
0.334; 0.408; 0.479; 0.624; 0.770; 0.916. The time constant of the thermocouples equaled 
0.04-0.2 sec, which is acceptable for purposes of these experiments. 

The experiments were performed for Reynolds numbers in the range Re = 5.1.103-1.25"104 
and rates of cooling of the wall (%N/8~) m = 1.075-1.875 kW/sec. The thermal load as a func- 
tion of time for the operating regimes of the bundle with the Reynolds numbers Re = 5.1"103; 
8.9.103; 1.25.104 is shown in Fig. i. The figure also shows the typical change in the exper- 
imentally measured temperatures of the heat-transfer agent as a function of time for Re = 
1.25.104 . One can see that as the thermal load changes over a period of 16 sec the tempera- 
ture of the heat-transfer agent emerges to a new stationary level at each point of the flow 
practically within 60-76 sec. In Fig. 2 the experimentally measured temperature distribu- 
tions in the transfer section of the bundle for different times and for Re = 1.25.104 are 
compared with the theoretically computed temperature distributions for different values of 
the coefficient K n. 

The temperature distributions were calculated with the help of the model of the flow 
of a homogenized medium [2, 3, 6, 7] and a system of differential equations including the 
equations of energy, motion, and continuity and the equation of state, as well as the heat- 
conduction equation, describing the temperature distribution in the "soiid phase" - in the 
twisted tubes. For the problem at hand, this system of equations has the form: 

O, --  q~ (1. - - m )  - - T ) %  r --Or r%~ Or } + - - O x  )~T~ Ox ] ' (3) 

pc;-~§ =--§ ~ ( T ~ - - T ) §  Or ~,r~-~r ) ( O x  ~'* Ox 7' (4) 
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Ou OP pu 2 ! 0 / c)u \ 
Ox Ox " 2d e r Or 

% 
G = 2~m J purdr, (6 )  

0 

p = pRT. (7) 

Thus, in the case of a stationary process a one-temperature model of the flow [2], when 
only the temperature distribution in the heat-transfer agent is determined, was employed, 
whereas for the nonstationary case a two-temperature mode, in which the change in the temper- 
ature of the tubes as a function of time is also taken into account, is employed in order 
to take into account the thermal inertia of the twisted tubes. The system of equations (3)- 
(7) is supplemented by the following boundary conditions: at the input into the bundle (x = 0): 

T r(r, 0, T)=TTin(r ,  T), T(r, 0, T ) = ~ . n  (r,~), 
( s )  

u(r, 0, ~)=Uin( r ,  ~), P(r, 0, ~ ) = A n ( Z ) ,  

a t  t h e  o u t p u t  f rom t h e  b u n d l e  ( c o n d i t i o n  o f  no h e a t  t r a n s f e r ) :  

OTT (r' x' T) x=t-- O' OT (r, x, T) z= t=0 '  (9)  

on t h e  a x i s  o f  t h e  b u n d l e  ( c o n d i t i o n  o f  a x i a l  symmet ry) :  

OTT(r'x'~)Or r=o =O'OT(r'x'~)[Or ;r=0 = 0 ,  -~r0U[r=0 =:0, (I0) 

on the outer boundary of the bundle: 

_XTr OT,(r, x, ~) [ = O, __~eOT (r, x, ~) I Ou I 
Or r=r k Or r=rC O, ~ r=rk= O. (ii) 

The starting conditions are found from the solution of the stationary problem at the time 
= 0. In solving the system (3)-(7) the quantities in front of the derivatives were first 

averaged over the differentiation variables and were removed from the differentiation opera- 
tor; then they were refined in iteration cycles. The equations of gas dynamics (5) and (6) 
are written in the quasistationary approximation, since in the experiments the conditions 
under which the perturbations of the parameters determining the flow process are small and 
the duration of the perturbations is much longer than the propagation time of a sound wave 
along the length of the bundle were realized. In the heat-conduction equation (3) the coef- 
ficient of thermal conductivity of the "solid phase" is written down taking into account the 
directional anisotropy of the properties of this phase. In so doing, the coefficient of 
thermal conductivity in the radial direction was determined by the dependence 

[l--e e___]-', (12) 

~ =  -i~ + ~hJ 
and in the longitudinal direction by the formula 

%Tx = %T( 1 --e)+ Re, (13) 

where the concept of an equivalent coefficient of thermal conductivity was employed [4]. Tak- 
ing into account the volume occupied by the heat-transfer agent in the tubes, the density of 
the "solid phase" was assumed to equal 

Pr = Pm(l -- e) ~- p~, (14) 

while the heat capacity of the "solid phase" was determined by the relation 

Cr = r - -  e) ~- ~e. ( 15 ) 

s t h e  e x p r e s s i o n s  ( 1 2 ) - ( 1 5 )  e i s  t h e  r a t i o  o f  t h e  a r e a  o f  t h e  f l o w - t h r o u g h  s e c t i o n  o f  t h e  
tube to the total cross-sectional area of the tube, the indices t and m refer to the tube 
material, and the index g refers to the heat-transfer agent filling a tube. The energy 
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Fig. 3. Mean mass temperature and the coefficient K n as a func- 
tion of time with a reduction of the heat load for Fr m = 57: 
1-3) change in the mean mass temperature for Re = 1.25.10#; 
8.9.10a; 5.1.103; 4-6) change in the coefficient K n for Re = 
1.25-104; 8.9.10s; 5.1.10s; 7-9) experimental data for the same 

Re numbers. 

Fig. 4. Coefficient K as a function of the Fourier number with 
a reduction of the heat load: i) the dependence (i); 2) the 
dependence (20); 3, 4, 5) the dependence K = f(Fo b) for (BN/ 
ST) = 1.875, 1.75, and 1.075 kW/sec; 6, 7, 8) experimental data 
for a bundle with Fr m = 220 with Re = 8.9"i0 s and (SN/~) m = 
7.5 kW/sec; Re = 1.36"10 ~ and (8N/8~) m = 1.075 kW/sec. Re = 
1.75.104 and (SN/B~) m = i0 kW/sec, respectively; 9) experimental 
data for Fr m = 57, Re = 1.25.10 # and (SN/ST) m = 1.875 kW/sec 
with analysis using the Fo m (black dots) and Fo b (white dots) 
numbers; i0) the same for Re = 8.9.10 s and (8N/8~) m = 1.175 
kW/sec; ii) the same for Re = 5.1.i0 s and (~N/~T)m =l.075kW/sec. 

equation (4) and the heat-conduction equation (3) were solved by the method of variable di- 
rections. The numerical analogs of the equations were constructed according to an implicit 
scheme and solved by the method of alternate intervals. The equations of gas dynamics (5) 
and (6) were solved by the method of alternate intervals with the help of Sumini's substitu- 
tion. These solutions were then linked through the equation of state and the iteration cy- 
cles [3-6]. The coefficients X e and Ve in (4) and (5) can be uniquely related with the ex- 
perimentally determined coefficient K n (K n = ~e/ude; K n = Xe/pcpude), setting as an approxi- 
mation the effective turbulent Lewis and Prandtl numbers equal to unity [3]. 

To determine the effective coefficient of diffusion K n the experimentally measured tem- 
perature distribution in the heat-transfer agent (Fig. 2) are compared with the temperature 
distributions computed theoretically by the modified method of least squares [3]. Comparison 
of the experimental temperature distributions with the theoretical distributions T = T(r/r k, 
�9 , K) indicates that the coefficient K n decreases during the first few moments compared with 
the quasistationary value. The coefficient K n as a function of time is shown in Fig. 3. One 
can see that the coefficient K n becomes practically stationary within a time �9 = 30-40 sec 
for (SN/ST) m = 1.075-1.875 kW/sec. At the same time, for (8N/8~) m = 7.5-10 kW/sec K n for 
a bundle with Fr m = 220 assumed a quasistationary value within 10-13 sec [3, 6]. For this 
reason when the experimental data for (8N/8~) m = 1.075-1.875 are analyzed in the form 

• = Kn/K~ = [ (Fob) ( 16 ) 

a deviation from the dependence (i) is observed (Fig. 4). This is attributable to the fact 
that the criterion Fo b does not take into account the change in the derivative of the wall 
temperature 8Tw/ST , with which the time derivative of the thermal load 8N/ST is related. To 
take into account the change in the turbulence structure of the flow in the layer at the wall 
accompanying a change in the temperature of the wall, in [4] an effective time, defined by 
the dependence 

~e=(~- -~o)  a - l -b  O~)m ' ( 1 7 )  

362 



was introduced into the Fourier criterion instead of the real time; here, ~ is the real time, 
measured from the moment at which the thermal operating regime of the apparatus starts to 
change; a = 0.043; b = 0.263 sec/kW; and, T 0 is the period of time preceding the moment at 
which the thermal load is increased sharply. In addition, the modified Fourier criterion, 
calculated from the formula 

Fore= a'c____e ~b(Z---To) [ ( a N ~  ] 
d~ - -  cppbd~k ~ a .-{- b 0"~ ]m ] " ( 1 8 )  

is employed as the determining criterion. 

For the case of a sharp reduction in the thermal load the time T o in the expressions 
(17) and (18) equals zero. If it is assumed that for the type of nonstationarity under study 
the effect of the parameter (aN/~T) m on the coefficient K n is analogous to the effect of this 
parameter on K n with an increase in the thermal load, i.e., 

2 0 .043+0 .263  ON (19)  
cppbd k -~-T m ' 

t h e n  t h e  e x p e r i m e n t a l  d a t a  f o r  b u n d l e s  w i t h  (8N/8~) m = 1 . 0 7 5 - 1 . 8 7 5  kW/sec and Fr m = 57 a g r e e  
w e l l  w i t h  t h e  e x p e r i m e n t a l  d a t a  f o r  (aN/aT)  m = 7 . 5 - 1 0  kW/sec and Fr m = 220 ( F i g .  4 ) .  Here 
t h e  e x p e r i m e n t a l  d a t a  on K n f o r  b u n d l e s  w i t h  Fr  m = 57 and 220 a r e  r e f e r r e d  t o  t h e  q u a s i s t a -  
t i o n a r y  v a l u e s  o f  t h e  c o e f f i c i e n t  Kqs , o b t a i n e d  e x p e r i m e n t a l l y  f o r  each  Reyno lds  number Re 
s t u d i e d ,  t h e  q u a n t i t y  (aN/8~)m, and t h e  number Fr  m. Then t h e  e x p e r i m e n t a l  d a t a  on t h e  r e l a -  
t i v e  c o e f f i c i e n t  K = Kn/Kqs f o r  beams w i t h  t h e  numbers Fr  m = 57 and 220 in  a r a n g e  o f  v a l u e s  
o f  Re and (aN/SZ)m, encompassed  by e x p e r i m e n t s  [Re = 5 . 1 . 1 0 3 - 1 . 7 5 " 1 0 4  , ( 8N/az )  m = 1 .075-10  
k W / s e c ] ,  can be g e n e r a l i z e d  by a s i n g l e  dependence  

• ---- 0.454.10-SFom 2 - -  3.86 �9 10-3Fo~n 1 ~ 1.28, (20)  

valid for the numbers Fo m i 1.4"10 -2 This dependence generalizes the experimental data for 
both the case of a reduction of the thermal load to zero ~topping of the heat-exchange ap- 
paratus) and the case of thermal-load reduction with a transition from one operating regime 
to another. An analogous result was obtained also for the type of nonstationarity associated 
with an increase in the thermal load [8]. 

The criterion Frm, characterizing the characteristics of the flow in the bundle of 
twisted tubes, affects differently the coefficient K n for different types of nonstationarity. 
When the number Fr m is reduced under conditions of nonstationary heating of the bundle of 
twisted tubes the process of equalization of temperature nonuniformities proceeds much more 
rapidly (the coefficient K n assumes a quasistationary value more rapidly [8]), whereas for 
a reduction of the thermal load the number Fr m is not observed to affect the value of K. 

The foregoing generalization of the experimental data suggests a dependence for calcu- 
lating the nonstationary effective coefficient of diffusion for the operating regimes of heat- 
exchange apparatus and systems, associated with a reduction of the thermal load to zero as 
well as with a transition from one operating regime to another with a lower thermal power. 
This dependence can be employed to close the system of differential equations describing 
nonstationary heat- and mass-transfer in bundles of twisted tubes for the type of nonstation- 
arity studied above. 

The good agreement between the experimentally measured and theoretically computed tem- 
perature distribution for regimes with a reduction of the thermal load serves as an experi- 
mental justification for the flow model adopted, its mathematical description, and the methods 
for calculating nonstationary flow in bundles of twisted tubes for this case. 

NOTATION 

N, thermal load; T, time; Kn, a dimensionless effective coefficient of diffusion; u, 
velocity; de, equivalent diameter; Frm, a criterion characterizing the characteristics of 
the flow in a bundle of twisted tubes; S, pitch of the twisting of a tube; d, maximum size 
of the profile of the tube; FOb, Fourier' criterion; a, coefficient of thermal diffusivity; 
d c, diameter of the jacket of the heat exchanger (bundle of tubes); Ib, coefficient of ther- 
mal conductivity; Cp, specific heat capacity; Pb, density; x and r, longitudinal and radial 
coordinates; rk, radius of the bundle; Re, Reynolds number; e, heat-transfer coefficient; 

363 



qv, volume density of e n e r g y  release; P, pressure; K, relative coefficient of diffusion; 
Fom, modified Fourier criterion; $, coefficient of hydraulic resistance; and m, porosity of 
bundle of tubes with respect to the heat-transfer agent. 
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FLOW IN A ROTATING SLOT CHANNEL WITH INJECTION THROUGH 

ONE WALL AND COMPENSATING SUCTION THROUGH THE OTHER 

E. M. Smirnov and S. V. Yurkin UDC 532.516 

The results of calculating the velocity field and integral characteristics for 
laminar conditions are presented and analyzed. 

The use of porous materials is regarded as a promising trend in the improvement of con- 
vective cooling systems, including rotary components of power machinery. As a consequence, 
it is necessary to investigate the flow of coolant media in rotating channels with walls 
through which there is injection or suction. In a general formulation, this problem is ex- 
tremely complex, since the field of hydrodynamic characteristics is significantly three-di- 
mensional. However, as in the case of motionless channels with permeable walls [i, 2], a 
series of simple model problems may be formulated and solved, thereby elucidating the basic 
specific effects and obtaining the corresponding quantitative estimates. One such problem 
forms the subject of the present work. 

Suppose that a prismatic slot channel of constant height 2h, in which a viscous liquid 
moves isothermally, is uniformly rotated at angular velocity m relative to an axis perpen- 
dicular to the wide wall forming the slot. A Cartesian coordinate system 0, x, y, z is in- 
troduced; this system is rigidly connected to the channel, and is oriented so that the y axis 
is directed along the axis of rotation, the z axis is parallel to the lateral boundary wall 
of the channel in the direction of flow, and the coordinate origin is in the median plane 
of the channel. 

Assume that the wide walls are of uniform porosity over the surface. At the wall y = 
h0, v 0 = const < 0, which corresponds to injection. At the wall y = -h, the normal velocity 
is also v0, i.e., there is suction equal in intensity to the injection. The side walls are 
impermeable. In these conditions, the liquid flow rate along the axis 0z is constant and 
the problem may be formulated for calculating developed flow, in which the relative-velocity 
field does not depend on the coordinate z. Limiting consideration to flow in the region far 
from the side walls, the equations of relative motion may be written in the form 

d~u Op* du , (1) v - -  = - -  § 2 ~  -5 Vo 
dya Ox Ty  
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